3.4.12 \(\int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx\) [312]

3.4.12.1 Optimal result
3.4.12.2 Mathematica [C] (verified)
3.4.12.3 Rubi [A] (verified)
3.4.12.4 Maple [B] (verified)
3.4.12.5 Fricas [C] (verification not implemented)
3.4.12.6 Sympy [F(-1)]
3.4.12.7 Maxima [F]
3.4.12.8 Giac [F]
3.4.12.9 Mupad [F(-1)]

3.4.12.1 Optimal result

Integrand size = 23, antiderivative size = 161 \[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {56 a^4 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {32 a^4 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {66 a^4 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {8 a^4 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^4 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

output
8/3*a^4*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a^4*sec(d*x+c)^(5/2)*sin(d*x+c)/ 
d+66/5*a^4*sin(d*x+c)*sec(d*x+c)^(1/2)/d-56/5*a^4*(cos(1/2*d*x+1/2*c)^2)^( 
1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^( 
1/2)*sec(d*x+c)^(1/2)/d+32/3*a^4*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+ 
1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^( 
1/2)/d
 
3.4.12.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.66 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.73 \[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {a^4 (1+\cos (c+d x))^4 \sec ^8\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {8 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (21 \left (1+e^{2 i (c+d x)}\right )+21 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+20 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\sqrt {\sec (c+d x)} (-3 (-61+5 \cos (2 c)) \cos (d x) \csc (c)+30 \cos (c) \sin (d x)+2 (20+3 \sec (c+d x)) \tan (c+d x))\right )}{240 d} \]

input
Integrate[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(7/2),x]
 
output
(a^4*(1 + Cos[c + d*x])^4*Sec[(c + d*x)/2]^8*(((-8*I)*Sqrt[2]*Sqrt[E^(I*(c 
 + d*x))/(1 + E^((2*I)*(c + d*x)))]*(21*(1 + E^((2*I)*(c + d*x))) + 21*(-1 
 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 
 3/4, -E^((2*I)*(c + d*x))] + 20*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d* 
x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + Sqrt[Sec[c + d*x]]*(-3*(-61 
+ 5*Cos[2*c])*Cos[d*x]*Csc[c] + 30*Cos[c]*Sin[d*x] + 2*(20 + 3*Sec[c + d*x 
])*Tan[c + d*x])))/(240*d)
 
3.4.12.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 3717, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {7}{2}}(c+d x) (a \cos (c+d x)+a)^4 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^4dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^4}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \int \left (a^4 \sec ^{\frac {7}{2}}(c+d x)+4 a^4 \sec ^{\frac {5}{2}}(c+d x)+6 a^4 \sec ^{\frac {3}{2}}(c+d x)+4 a^4 \sqrt {\sec (c+d x)}+\frac {a^4}{\sqrt {\sec (c+d x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 a^4 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {8 a^4 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {66 a^4 \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {32 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {56 a^4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\)

input
Int[(a + a*Cos[c + d*x])^4*Sec[c + d*x]^(7/2),x]
 
output
(-56*a^4*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/ 
(5*d) + (32*a^4*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + 
d*x]])/(3*d) + (66*a^4*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(5*d) + (8*a^4*Sec 
[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a^4*Sec[c + d*x]^(5/2)*Sin[c + d* 
x])/(5*d)
 

3.4.12.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 
3.4.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(189)=378\).

Time = 202.29 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.40

method result size
default \(-\frac {32 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{4} \left (\frac {41 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{60 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{20 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{24 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}-\frac {33 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{40 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{320 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{3}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(386\)
parts \(\text {Expression too large to display}\) \(1031\)

input
int((a+cos(d*x+c)*a)^4*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
-32*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^4*(41/60*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))-7/20*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x 
+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/24*cos(1/2*d*x+1 
/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/ 
2*c)^2-1/2)^2-33/40*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2* 
d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-1/320*cos(1/2*d*x+1/2*c)*(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2) 
^3)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.4.12.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.25 \[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 \, {\left (40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 40 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 42 i \, \sqrt {2} a^{4} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (99 \, a^{4} \cos \left (d x + c\right )^{2} + 20 \, a^{4} \cos \left (d x + c\right ) + 3 \, a^{4}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
-2/15*(40*I*sqrt(2)*a^4*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x 
+ c) + I*sin(d*x + c)) - 40*I*sqrt(2)*a^4*cos(d*x + c)^2*weierstrassPInver 
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 42*I*sqrt(2)*a^4*cos(d*x + c)^2 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c))) - 42*I*sqrt(2)*a^4*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstr 
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (99*a^4*cos(d*x + c)^ 
2 + 20*a^4*cos(d*x + c) + 3*a^4)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d 
*x + c)^2)
 
3.4.12.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**4*sec(d*x+c)**(7/2),x)
 
output
Timed out
 
3.4.12.7 Maxima [F]

\[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{4} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(7/2), x)
 
3.4.12.8 Giac [F]

\[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (a \cos \left (d x + c\right ) + a\right )}^{4} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

input
integrate((a+a*cos(d*x+c))^4*sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
integrate((a*cos(d*x + c) + a)^4*sec(d*x + c)^(7/2), x)
 
3.4.12.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^4 \sec ^{\frac {7}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^4 \,d x \]

input
int((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^4,x)
 
output
int((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^4, x)